How Important Is It To Dechlor When Fishless Cycling?

On chloramine and its effects on AOB and NOB bacteria, Bignose found some interesting information a while ago:

Bignose said:
Well, a quick perusal of the scientific literature came up with some rather surprising results.

Firstly, and most surprising to me, the problem ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) growing in water utilities' facilities is becoming a somewhat serious issue. The chloramine does in fact, promote the growth of AOB and NOB, with the consequences -- written is a nice non-threatening way as -- "...the addition of chloramines can lead to biological instability in a drinking water distribution system by promoting the growth of nitrifying bacteria..." and "The resulting reduction in chloramine residual and development of a microbial community in the distribution system lead to water quality deterioration and violation of drinking water regulations." I think that I might very well have put a little more emphasis on violations of the drinking water regulations.

Basically, because the AOB and NOB grow, they excrete other organic compounds allowing other bacteria to grow. At the very minimum, this additional bacteria will require more chloramine to kill it off, but then, more chloramine promotes more growth of AOB and NOB, and I think you can see where this cycle is going... Here is the really bad news, with this extra growth, all that stuff we don't want in there could grow now, like the coliform bacteria (E. coli -- think spinach), and viruses, and Guardia lamblia and so on. All of these are pretty strictly required to be below certain levels by the U.S. EPA, and similarly in other countries.

Secondly, the really interesting part is that in lab test after lab test, the recommended exposure times and concentrations of chloramines do their jobs. The chloramines in the lab kill off all the organics, including the AOB and NOB. However, at the utility side of the issue, nitrification episodes are rather commonplace. One recent study found 63% of U.S. chloramining utilities and 64% of Southern Australian utilities tested positive for nitrifying bacteria.

One hypothesis for the discrepancy between the laboratory studies and operating results is that there are AOB strains
growing in full-scale systems that possess a greater chloramine resistance than those studied in the kinetic experiments. Whether the AOB strains used in earlier kinetic studies are representative of significant strains involved in full-scale nitrification episodes has not been confirmed, since there are no published evaluations of AOB diversity in chloraminated distribution systems.


This quote, and the above ones, from Regan, Harrington, and Noguera: "Ammonia- and Nitrite-Oxidizing Bacterial Communities in a Pilot-Scale Chloraminated Drinking Water Distribution System" Applied and Enviromental Microbiology 2002. The study where the %'s came from was Wolfe et al. "Occurrence of nitrification in chloranimated distribution systems" Journal (American Water Works Association), 1996

In other words, the strains that are in the water utilities have become more resistant to chloramines, and can indeed use the ammonia present as sustenance.

And, back to fishtanks, where do the AOB and NOB come from in the first place? Well, if you used tap water, they probably came from your water utility, and if a resistant strain has grown there... that same chloramine resistant strain is probably now growing in your tank too. The Regan et al. study cited above and Regan et al. "Diversity of nitrifying bacteria in full-scale cloranimated distribution systems" Water Research, 2003, was among the first to use DNA sequencing to distinguish all the different AOB and NOB that are growing. Some of the names should be pretty familiar: AOBs Nitrosospira, Nm. oligotropha and NOBs Nitrospira, Nitrobacter

So from the above it would appear that if your water is chloraminated then dechlorination is less important that many would have believed. It is very interesting to note that despite chloramine seeming to be brilliant in all lab results, once out in the field it doesn't work the same.

There are quite a few reports of people keeping fish tanks perfectly well without using any dechlorination procedures (I believe Ooh_Feeshy on this forum is one) with no ill effects, though that more often refers to maintaining a tank, rather than setting one up (let us not forget that most water companies are trying to treat with chlorine/chloramine for bacteria levels considerably lower than in our tank - thus once the colony is there the chances of a water change wiping out the colony is somewhat lower).

While I agree there are a number of ways the bacteria can come into the tanks, the fact we fill them up with water that is likely to already contain bacteria makes me believe that tap water is the most likely source.
 
Thanks for the replies. Very interesting thread now, kinda the thing I wanted but more :good:

If anyone else has anything else to add would be very interested to hear
 

Most reactions

Back
Top